Exercise 1.1

Concept corner

Definition:

- ✓ A set is a collection of well defined objects.
- ✓ If *A* and *B* are two non-empty sets, then the set of all ordered pairs (a, b) such that $a \in A, b \in B$ is called the **Cartesian Product of** *A* and *B*, and is denoted by $A \times B$. Thus $A \times B = \{(a, b) | a \in A, b \in B\}$

Note:

- ➤ A × B is the set of all possible ordered pairs between the elements of A and B such that the first coordinate is an element of A and the second coordinate is an element of B.
- > $B \times A$ is the set of all possible ordered pairs between the element of *A* and *B* such that the first coordinate is an element of *B* and the second coordinate is an element of *A*
- ▶ If a = b, then (a, b) = (b, a).
- > The "Cartesian product" is also referred as "cross product"
- ➤ In general $A \times B \neq B \times A$, but $n(A \times B) = n(B \times A)$
- \blacktriangleright $A \times B = \emptyset$ if and only if $A = \emptyset$ or $B = \emptyset$
- ▶ If n(A) = p and n(B) = q then $n(A \times B) = pq$
- > The set of all points in the Cartesian plane can be viewed as the set of all ordered pairs (x, y) where x, y are real numbers. In fact $\mathbb{R} \times \mathbb{R}$ is the set of all points which we call as the Cartesian plane.
- > Distributive property of Cartesian product:

(i)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

(ii) $A \times (B \cap C) = (A \times B) \cap (A \times C)$

→ $A \times B$ represent a shape in two dimensions and $A \times B \times C$ represent an object in three dimensions.

Exercise 1.2

Concept corner

Definition: Let *A* and *B* be any two non-empty sets. A **relation** (**R**) from *A* to *B* is a subset of $A \times B$ satisfying some specified conditions. If $x \in A$ is related to $y \in B$ through R, then we write it as xRy. xRy if and only if $(x, y) \in R$

- ✓ The domain of the relation $R = \{x \in A | xRy$, for some $y \in B\}$
- ✓ The co-domain of the relation R is B
- ✓ The range of the relation $R = \{y \in B | xRy, \text{ for some } x \in A\}$

Note:

A relation may be represented algebraically either by the roster method or by the set builder method.

Exercise 1.3

Concept corner

Definition: A relations *f* between two non-empty sets *X* and *Y* is called a **function** from *X* to *Y* if, for each $x \in X$ there exists only one $y \in Y$ such that $(x, y) \in f$. That is, $f = \{(x, y) / \text{ for all } x \in X, y \in Y\}$ **Note:**

- ✓ If $f: X \to Y$ is a function then, the set *X* is called the domain, *f* and the set *Y* is called its co-domain.
- ✓ A function is also called as a mapping or transformation.
- ✓ $f: X \to Y$ is a function only if

i) every element in the domain of f has an image.

- ii) the image is unique.
- ✓ If *A* and *B* are finite sets such that n(A) = p, n(B) = q then the total number of functions that exist between *A* and *B* is q^p
- ✓ If f(a) = b, then *b* is called **image** of a under *f* and *a* is called a **pre-image** of *b*.
- ✓ The set of all images of the elements *X* under *f* is called the **range** of *f*.
- ✓ Describing domain of a function
 - (i) Let $(x) = \frac{1}{1+x}$. If x = -1 then f(-1) is not defined. Hence f is defined for all real numbers except at x = -1. So, domain of f is $\mathbb{R} \{-1\}$
 - (ii) Let $(x) = \frac{1}{x^2 5x + 6}$, if x = 2,3 then f(2) and f(3) are not defined. Hence f is defined for all real numbers except at x = 2 and 3. So domain of $f = \mathbb{R} \{2,3\}$
- An arrow diagram is a visual representation of a relation.
- ▶ If n(A) = p, n(B) = q then the total number of relations that exist from A to B is 2^{pq} .
- > A relation which contains no elements is called a "Null relation"

Exercise 1.4

Concept corner

Note: Any equation represented in a graph is usually called a curve.

- ✓ Representation of functions
 - a) a set of ordered pairs b) a table form
 - c) An arrow diagram d) a graphical form.
- ✓ Vertical line test: A curve drawn in a graph represents a function, if every vertical line intersects the curve in at most one point.
- ✓ Horizontal Line Test: A function represented in a graph in one one, if every horizontal line intersects the curve in at most one point.
- ✓ Every function can be represented by a curve in a graph. But not every curve drawn in a graph will represent a function.
- ✓ If f: A B is an onto function then, the range of f = B

Note: A one-one and onto function is also called a one-one correspondence.

Sl.No	Name	Definition	Mapping Example	
1	One-One function (Injection)	A function $f: A \rightarrow B$ is called one-one function if distinct elements of A have distinct images in B .	$\begin{array}{cccc} A & f & B \\ \hline 1 & & a \\ 2 & & b \\ 3 & & c \\ 3 & & c \\ 4 & & f \end{array}$	
2	Many-one function	A function $f: A \rightarrow B$ is called many-one function if two or more elements of A have same image in B	$ \begin{array}{cccc} A & f & B \\ \hline 1 & & & a \\ 2 & & & b \\ 3 & & & c \\ 4 & & & c \\ \end{array} $	
3	Onto function (Surjection)	A function $f: A \rightarrow B$ is said to be onto function if the range of f is equal to the co- domain of f .	$ \begin{array}{cccc} A & f & B \\ \hline 1 & & & a \\ 2 & & & & b \\ 3 & & & & c \\ 4 & & & & c \\ \end{array} $	
4	Into function	A function $f: A \rightarrow B$ is called an into function if there exists at least one element in <i>B</i> which is not the image of any element of <i>A</i>	$\begin{array}{cccc} A & f & B \\ \hline 1 & & & & a \\ 2 & & & & b \\ 3 & & & & & c \\ 3 & & & & & d \\ 4 & & & & f \end{array}$	
5	Constant function	A function $f: A \rightarrow B$ is called a constant function if the range of f contains only one element. That is, $f(x) = c$ for all $x \in A$ and for some fixed $c \in B$.	$ \begin{array}{c} A & f & B \\ \hline a & & & \\ b & & & \\ c & & & \\ d & & & \\ \end{array} $	
6	Identity function	Let <i>A</i> be a non-empty set. Then the function $f: A \rightarrow A$ defined by $f(x) = x$ for all $x \in A$ is called an identity function on <i>A</i> and is denoted by I_A .	$\begin{array}{cccc} A & f & B \\ \hline x & & & & \\ y & & & & \\ z & & & & \\ \end{array}$	
7	Bijection	If a function $f: A \rightarrow B$ is both one-one and onto, then f is called a bijection from A to B	$\begin{array}{cccc} A & f & B \\ \hline 1 & & & \\ 2 & & & \\ 3 & & & & \\ \end{array}$	
8	Real – Valued	A function $f: A \rightarrow B$ is called a real valued function if the range of f is a		
	function	subset of the set of all real numbers <i>R</i> . That is $f(A) \subseteq R$		

Types of functions

В

Exercise 1.5

Concept corner

Definition: Let $f: A \to B$ and $g: B \to C$ be two functions. Then the composition of *f* and *g* denoted by $g \circ f$ is defined as the function

 $g \circ f(x) = g(f(x))$ for all $x \in A$.

- ✓ The composition $g \circ f(x)$ exists only when range of f is a subset of g
- ✓ $f \circ g \neq g \circ f$ Composition of function is not commutative.
- ✓ Composition of three functions is always associative. That is $f \circ (g \circ h) = (f \circ g) \circ h$.
- ✓ A function $f: R \to R$ defined by f(x) = mx + c, $m \neq 0$ is called a **linear function**. Some specific linear functions and their graphs are given below.

No.	Function	Domain and Definition	Graph
1	The identity function	$f: R \to R$ defined by $f(x) = x$	$\begin{array}{c} \begin{array}{c} & AY \\ & 4 \\ & 3 \\ & 2 \\ & 2 \\ & 1 \\ \hline \\$
2	Additive inverse function	$f: R \to R$ defined by $f(x) = -x$	$\begin{array}{c} & & & & & & \\ & & & & \\$

✓ A function $f: R \to R$ defined by $f(x) = ax^2 + bx + c$ ($a \neq 0$) is called a **quadratic function**.

Chapter 1 - Relations and Functions 5				
(A function $f: R \to R$ defined by $f(x) = ax^3 + bx^2 + cx + d$ ($a \neq 0$) is called a cubic function .	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$		
ľ	A function $f: R - \{0\} \to R$ defined by $f(x) = \frac{1}{x}$ is called a reciprocal function .			
A C	A function $f: R \to R$ defined by $f(x) = c$ for all $x \in R$ is called a constant function .	$\begin{array}{c c} Y \\ \hline \\ c \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\$		
r j	Modulus or Absolute Valued Function: $f: R \to [0, \infty)$ defined by $f(x) = x = \begin{cases} x \ ; x \ge 0 \\ -x \ ; x < 0 \end{cases}$	$y = x + \frac{5}{4}$ $y = x + \frac{4}{4}$ $x + \frac{2}{4}$		
✓ Modulus function is not a linear function but it is composed of two linear functions x and $-x$				

(

٦