1. Relations and Functions

Exercise 1.1

Concept corner

Definition:

\checkmark A set is a collection of well defined objects.
\checkmark If A and B are two non-empty sets, then the set of all ordered pairs (a, b) such that $a \in A, b \in B$ is called the Cartesian Product of \boldsymbol{A} and \boldsymbol{B}, and is denoted by $A \times B$. Thus $A \times B=\{(a, b) \mid a \in A, b \in B\}$

Note:

$>A \times B$ is the set of all possible ordered pairs between the elements of A and B such that the first coordinate is an element of A and the second coordinate is an element of B.
$>B \times A$ is the set of all possible ordered pairs between the element of A and B such that the first coordinate is an element of B and the second coordinate is an element of A
$>$ If $a=b$, then $(a, b)=(b, a)$.
$>$ The "Cartesian product" is also referred as "cross product"
$>$ In general $A \times B \neq B \times A$, but $n(A \times B)=n(B \times A)$
$>A \times B=\emptyset$ if and only if $A=\emptyset$ or $B=\emptyset$
$>$ If $n(A)=p$ and $n(B)=q$ then $n(A \times B)=p q$
$>$ The set of all points in the Cartesian plane can be viewed as the set of all ordered pairs (x, y) where x, y are real numbers. In fact $\mathbb{R} \times \mathbb{R}$ is the set of all points which we call as the Cartesian plane.
$>$ Distributive property of Cartesian product:
(i) $A \times(B \cup C)=(A \times B) \cup(A \times C)$
(ii) $A \times(B \cap C)=(A \times B) \cap(A \times C)$
$>A \times B$ represent a shape in two dimensions and $A \times B \times C$ represent an object in three dimensions.

Exercise 1.2

Concept corner

Definition: Let A and B be any two non-empty sets. A relation (R) from A to B is a subset of $A \times B$ satisfying some specified conditions. If $x \in A$ is related to $y \in B$ through R , then we write it as $x R y$. $x R y$ if and only if $(x, y) \in R$
\checkmark The domain of the relation $R=\{x \in A \mid x R y$, for some $y \in B\}$
\checkmark The co-domain of the relation R is B
\checkmark The range of the relation $R=\{y \in B \mid x R y$, for some $x \in A\}$
Note:
$>$ A relation may be represented algebraically either by the roster method or by the set builder method.

Exercise 1.3

Concept corner

Definition: A relations f between two non-empty sets X and Y is called a function from X to Y if, for each $x \in X$ there exists only one $y \in Y$ such that $(x, y) \in f$.That is, $f=\{(x, y) /$ for all $x \in X, y \in Y\}$
Note:
\checkmark If $f: X \rightarrow Y$ is a function then, the set X is called the domain, f and the set Y is called its co-domain.
\checkmark A function is also called as a mapping or transformation.
$\checkmark f: X \rightarrow Y$ is a function only if
i) every element in the domain of f has an image.
ii) the image is unique.
\checkmark If A and B are finite sets such that $n(A)=p, n(B)=q$ then the total number of functions that exist between A and B is q^{p}
\checkmark If $f(a)=b$, then b is called image of a under f and a is called a pre-image of b.
\checkmark The set of all images of the elements X under f is called the range of f.
\checkmark Describing domain of a function
(i) Let $(x)=\frac{1}{1+x}$. If $x=-1$ then $f(-1)$ is not defined. Hence f is defined for all real numbers except at $x=-1$. So, domain of f is $\mathbb{R}-\{-1\}$
(ii) Let $(x)=\frac{1}{x^{2}-5 x+6}$, if $x=2,3$ then $f(2)$ and $f(3)$ are not defined. Hence f is defined for all real numbers except at $x=2$ and 3 . So domain of $f=\mathbb{R}-\{2,3\}$
An arrow diagram is a visual representation of a relation.
$>$ If $n(A)=p, n(B)=q$ then the total number of relations that exist from A to B is $2^{p q}$.
$>$ A relation which contains no elements is called a "Null relation"

Exercise 1.4

Concept corner

Note: Any equation represented in a graph is usually called a curve.
\checkmark Representation of functions
a) a set of ordered pairs
b) a table form
c) An arrow diagram
d) a graphical form.
\checkmark Vertical line test: A curve drawn in a graph represents a function, if every vertical line intersects the curve in at most one point.
\checkmark Horizontal Line Test: A function represented in a graph in one - one, if every horizontal line intersects the curve in at most one point.
\checkmark Every function can be represented by a curve in a graph. But not every curve drawn in a graph will represent a function.
\checkmark If $f: A-B$ is an onto function then, the range of $f=B$
Note: A one-one and onto function is also called a one-one correspondence.

Types of functions

Sl.No	Name	Definition	Mapping Example
1	One-One function (Injection)	A function $f: A \rightarrow B$ is called one-one function if distinct elements of A have distinct images in B.	
2	Many-one function	A function $f: A \rightarrow B$ is called many-one function if two or more elements of A have same image in B	
3	Onto function (Surjection)	A function $f: A \rightarrow B$ is said to be onto function if the range of f is equal to the codomain of f.	
4	Into function	A function $f: A \rightarrow B$ is called an into function if there exists at least one element in B which is not the image of any element of A	
5	Constant function	A function $f: A \rightarrow B$ is called a constant function if the range of f contains only one element. That is, $f(x)=c$ for all $x \in A$ and for some fixed $c \in B$.	
6	Identity function	Let A be a non-empty set. Then the function $f: A \rightarrow A$ defined by $f(x)=x$ for all $x \in A$ is called an identity function on A and is denoted by I_{A}.	
7	Bijection	If a function $f: A \rightarrow B$ is both one-one and onto, then f is called a bijection from A to B	
8	Real - Valued function	A function $f: A \rightarrow B$ is called a real valued function if the range of f is a subset of the set of all real numbers R. That is $f(A) \subseteq R$	

Exercise 1.5

Concept corner

Definition: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two functions. Then the composition of f and g denoted by $g \circ f$ is defined as the function
$g \circ f(x)=g(f(x))$ for all $x \in A$.

\checkmark The composition $g \circ f(x)$ exists only when range of f is a subset of g
$\checkmark f \circ g \neq g \circ f$ Composition of function is not commutative.
\checkmark Composition of three functions is always associative. That is $f \circ(g \circ h)=(f \circ g) \circ h$.
\checkmark A function $f: R \rightarrow R$ defined by $f(x)=m x+c, m \neq 0$ is called a linear function.
Some specific linear functions and their graphs are given below.

No.	Function	Domain and Definition	Graph
1	The identity function	$f: R \rightarrow R$ defined by $f(x)=x$	
2	Additive inverse function	$f: R \rightarrow R$ defined by $f(x)=-x$	

\checkmark A function $f: R \rightarrow R$ defined by $f(x)=a x^{2}+b x+c(a \neq 0)$ is called a quadratic function.

Function, Domain, Range and Definition	Graph
$f: R \rightarrow R$ defined by $f(x)=x^{2}, x \in R, f(x) \in[0, \infty)$	
$f: R \rightarrow R$ defined by $f(x)=-x^{2}, x \in R . f(x) \in(-\infty, 0]$	

A function $f: R \rightarrow R$ defined by $f(x)=a x^{3}+b x^{2}+c x+d$ ($a \neq 0$) is called a cubic function.

A function $f: R-\{0\} \rightarrow R$ defined by $f(x)=\frac{1}{x}$ is called a reciprocal function.

A function $f: R \rightarrow R$ defined by $f(x)=c$ for all $x \in R$ is called a constant function.

Modulus or Absolute Valued Function: $f: R \rightarrow[0, \infty)$ defined by $f(x)=|x|=\left\{\begin{array}{c}x ; x \geq 0 \\ -x ; x<0\end{array}\right.$

\checkmark Modulus function is not a linear function but it is composed of two linear functions x and $-x$

